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P. W. Bridgman's book [1] describes several forms of failure characteristic of high pressures. The explanation of these
phenomena proposed below is based on modern concepts concerning the rupture of brittle and plastic solids.

§1. The pinch effect consists in the following. A continuous cylinderis subjected to a pressure acting on the outside
cylindrical surface only; the ends are not under pressure. When the pressure attains a value roughly equal to the ultimate
strength in pure tension, parts of the cylinder fail, usually somewhere near the middle, but very seldom in the zone adjoin-
ing the seals. The impression is created that the cylinder has failed under a tensile load applied directly to its projecting
ends.... If the cylinder is made of a brittle material such as, for instance, glass or steel having the hardness of glass
failure produces a clearly expressed plane perpendicular to the axis, but, on the other hand, if the cylinder is made of a
material that remains capable of yielding up to failure, mild steel for instance, there is marked necking at the point of
fracture. Onthe whole, the fracture 1s very similar in form to that obtained in an ordinary tensile test ([1}, page 986).
Bridgman's explanation of the pinch effect, based on the criterion of maximum elongation, is unsatisfactory.

The principal elastic stresses in the cylinder are obviously equal to:
Gp=—p, Sg=—1, 5,=0. (1

Here r, © and z are cylindrical coordinates (the z axis coincides with the cylinder axis), and p is the lateral pressure.

A cylinder of ideally plastic material will obviously fail at a pressure p equal to o , where oy is the yield point,
because precisely at this pressure it goes over into the plastic state (2 max 7 = lcvr - g, | =0y ). At failure, these values
of pressure and slip-surface direction coincide with the corresponding values for the case of a rod subjected to a ten-
sile stress oy = Og.

Let us now consider the cylinder material ideally brittle or quasi-brittle [2]. A characteristic property of such mate-
rials is the presence of a large number of surface microcracks or defects. According to the brittle fracture theory [2], the
tensile strength of a cylinder is

K
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where K is the cohesion coefficient, and R is the cylinder radius. The function f(cty, ..., cp) dependsonthe dimension-
less form factors oy 4«44, ap; it is fully defined by the geometry of the surface microcracks. Hence, the largest cracks
normal to the surface play the greatest role. In Bridgman's experiment the pressure was transmitted to the lateral face of
the cylinder by either a gas or a liquid. It is quite obvious that gas or liquid penetrated into the surface microcracks and
produced a pressure on their walls equal to the pressure on the lateral face of the cylinder. On solving the corresponding
problem in crack theory, it is easy to see that, at least where the microcracks are all normal to the surface, the pressure
at failure will coincide with the value of o given by Eq. (2). Strictly speaking, the function f(ay,..., anp) is different
for different cylinders of the same length and radius. However, in the case of cylinders of the same material and similar
fabricarion, with the same past history and at the same experimental temperature, it can safely be assumed that these
differences are immaterial. Hence we get Bridgman’s result concerning the approximate equality of the limiting pressure
and the ultimate tensile strength.

Bridgman also describes another case of failure where the elongation does not determine rupture and the individual
stresses and strains are all compressive. A finite steel cylinder is tightly fitted into an ebonite tube of the same length.
Both are subjected to hydrostatic pressure acting over the entire outside surface. Failure issomewhat asifa cone had been
pushed into the tube, stretching it to breaking point. The explanation is analogous to that offered for the "pincheffect”
and is based on the fact that the stress g in the tube is always less in absolute value than the outside pressure. It is easy
to find the limiting extremal pressure p using our previous assumptionss
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where a,, is the tensile strength of the tube material (ebonite); v is Poisson's ratio; E is Young's modulus; the subscript 1
refers to the material of the continuous cylinder (steel); and the subscript 2 refers to the tube materal (ebonite).

§2. Let us examine the question of compressive strength in relation to brittle or quasi-brittle materials. This prob-
lem is also of interest in connection with Bridgman's experiments pertaining to the failure of thick-walled brittle cy-
linders [1].

Let a continuots brittle cylinder with a free lateral face be subjected to axial compression. There appears to be-
no reason for failure, because plastic or viscous flow is excluded, However, the presence of large numbers of micro-
cracks and defects in real brittle solids, especially close to the surface, causes the solid to be split up, as it were, by
the defects into a number of rods of very complex shape, as a result of whichit losesits elasticstability and fails. Hence,
the critical pressure is completely determined by the size and distribution of the defects. Accurate calculation is im-
possible in this case, but approximate formulas can be derived on the basis of dimensionalanalysis and certainreasonable
assumptions.

Let the characteristic dimension of the cracks in the brittle solid be denoted by ! and let the characteristic dimen-
sicn of the end region of the crack, where the cohesive forces act, be denoted by d. Let the intensity of the cohesive
forces in the end region be of the order of G. Then the compressive strength of a brittle solid can obviously be written in
the form

6. =GF (l/d). (4

Note that formula (4) does not take into account the effect of the size of the specimen itself; it is obvious that this
effect is negligibly small only when the characteristic dimension of the crack is small in comparison with the characteris-
tic linear dimension of the solid.

Following the example of G. I. Barenblatt [2], we shall make the natural assumption that

d<<l. (5)

Hence, formula (4) can be written in the form

s_~G ' (63
or, keeping in mind that the cohesion coefficient K is of the order of GdY/2 and the tensile strength of o, of the order of
Kl -2, in the form

s_je,~Vijd (m

Obviously, for an ideally brittle solid the intensity of the cohesive forces is of the order of Young's modulus E and for
a plastic or near-plastic solid of the order of the yield point. Therefore, in accordance with formula (6), the proximity
of the compressive strength to the modulus of elasticity E can serve as a qualitative characteristic of the proximity of
the corresponding material to a perfectly brittle one. Formula (7) can be used to verify the realizability of the smallness
hypothesis (5) in the case of the natural microcracks always present in a real solid, on the basis of macroscopic tests.

By way of comparison, we give data for the mechanical properties of some quasi-brittle materials; the figures (in
kg/mm 2) were taken from handbook [3]:
silicate glasses
6, =3—9, 0¢.=050—-200, E=(5-—85)-10%,

cast stone
5.=2, 6.=20, E=11.000,

acid-resistant ceramics
s,=1.15—11, 6. = 35 — 160, E=42-—10,

porcelain
6, =2.5—3.5, 6_ == 45— 55, E—=860—80.

The low compressive strength o for glasses and viscoelastic solids, compared with the modulus of elasticity, is
due to the intense stress relaxation near the ends of the cracks.
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