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P. W. Bridgman's book [1] describes several  forms of failure characteris t ic  of high pressures. The explanation of these 
phenomena proposed below is based on modern concepts concerning the rupture of bri t t le  and plastic solids. 

w 1. The pinch effect consists in the following. A continuous cylinder is subjected to a pressure acting on the outside 
cyl indr ical  surface only; the ends are not under pressure. When the pressure attains a value roughly equal to the u l t imate  
strength in pure tension, parts of the cylinder fail ,  usually somewhere near the middle,  but very seldom in the zone adjoin-  
ing the seals.  The impression is created that the cylinder has fai led under a tensi le  load applied direct ly  to its projecting 
ends . . . .  If the cylinder is made of a br i t t le  mater ia l  such as, for instance, glass or steel  having the hardness of glass 
failure produces a c lear ly  expressed plane perpendicular to the axis, but, on the other hand, if the cylinder is made of a 
mater ia l  that remains capable  o f  yielding up to fai lure,  mild steel  for instance, there is marked necking at the point of 
fracture. Onthe whole, the fracture is very s imilar  in form to that obtained in an ordinary tensile test ([1], page 96). 
Bridgman's explanation of the pinch effect ,  based on the criterion of maximum elongation,  is unsatisfactory. 

The principal  e last ic  stresses in tile cyl inder are obviously equal to: 

% = - - p ,  % = - - p ,  % = 0 .  (1) 

Here r, O and z are cyl indr ica l  coordinates (the z axis coincides with the cylinder axis) ,  and p is the la teral  pressure. 

A cylinder of idea l ly  plastic mater ia l  wil l  obviously fai l  at a pressure p equal to o s , where o s is the yield point, 
because precisely at this pressure it goes over into the plastic state (2 max r = [o r - o z I =a  s ). At fai lure,  these values 
of pressure and sl ip-surface direct ion coincide with the corresponding values for the case of a rod subjected to a t en-  
sile stress cy z = o s. 

Let us now consider the cylinder mater ia l  idea l ly  bri t t le  or quasi-bri t t le  [2]. A characteris t ic  property of such ma te -  
rials is the presence of a large number of surface microcracks or defects.  According to the bri t t le  fracture theory [2], the 
tensi le  strength of a cyl inder  is 

K 
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where K is the cohesion coefficient, and R is the cylinder radius. The function f(cq, ..., an)depends on the dimension- 

less form factors cq ..... , C~n; it is fully defined by the geometry of the surface microcracks. Hence, the largest cracks 

normal  to the surface play the greatest role.  In Bridgman's experiment  the pressure was t ransmit ted to the la te ra l  face of 
the cylinder by either a gas or a l iquid.  It is quite obvious that gas or liquid penetrated into the surface microcracks and 
produced a pressure on their  wails equal to the pressure on the la te ra l  face of the cylinder.  On solving the corresponding 
problem in crack theory,  it  is easy to see that ,  at least where the microcracks are a l l  normal  to the surface, the pressure 

at fai lure will coincide with the value of o given by Eq. (2). Str ic t ly  speaking, the function f (cq . . . . .  C~n) is different 
for different cylinders of the same length and radius. However, in the case of cylinders of the same mate r ia l  and s imilar  
fabr icat ion,  with the same past history and at the same exper imenta l  temperature ,  it can safely be assumed that these 

differences are i m m a t e r i a l .  Hence we get Bridgman's result concerning the approximate  equal i ty  of the l imi t ing pressure 

and the u l t imate  tensi le  strength. 

Bridgman also describes another case of failure where the elongation does not determine rupture and the individual  
stresses and strains are a l l  compressive.  A finite s teel  cyl inder is t ight ly fitted into an ebonite tube of the same length. 

Both are subjected to hydrostat ic pressure act ing over the entire outside surface. Fai lure is somewhat as i r a  cone had been 

pushed into the tube,  stretching it to breaking point. The explanat ion is analogous to that offered for the "pinch effect" 
and is based on the fact that the stress o 0 in the tube is always less in absolute value than the outside pressure. It is easy 

to find the l imi t ing  ext remal  pressure p using our previous assumptions: 

p* - -  & %  (3) 
(t  - -  2~2) E1 - -  ( t  - -  2 v l )  E2 

134 



where Op is the tensi le  strength of the tube mater ia l  (ebonite);  u is Poisson's ratio; E is Young's modulus; the subscript 1 
refers to the mater ia l  of the continuous cylinder (steel); and the subscript 2 refers to the tube matera l  (ebonite).  

w 2. Let us examine the question of compressive strength in relat ion to br i t t le  or quasi-br i t t le  mater ia ls .  This prob- 
lem is also of interest in connection with Bridgman's experiments pertaining to the fai lure of th ick-wal led  bri t t le  cy -  

linders [1]. 

Let a continuofis br i t t le  cy l inder  with a free la te ra l  face be subjected to axial  compression. There appears to b e  
no reason for failure,  became plastic or viscous flow is excluded.  However, the presence of large numbers of micro-  
cracks and defects in real  bri t t le  solids, especia l ly  close to the surface, causes the solid to be split up, as it were, by 
the defects into a number of rods of very complex shape, as a result of which it loses its e last ic  s tabil i ty and fails. Hence, 
the c r i t i ca l  pressure is comple te ly  determined by the size and distribution of the defects.  Accurate  calcula t ion is im-  
possible in this case, but approximate formulas can be derived on the basis of dimensional  analysis and certain reasonable 
assumptions. 

Let the character is t ic  dimension of the cracks in the bri t t le solid be denoted by l and let the character is t ic  d imen-  
sion of the end region of the crack,  where the cohesive forces act ,  be denoted by d. Let the intensity of the cohesive 
forces in the end region be of the order of G. Then the compressive strength of a br i t t le  solid can obviously be written in 
the form 

~_ = GF ( l / d ) .  (4) 

Note that formula (4) does not take into account the effect of the size of the specimen itself;  it is obvious that this 
effect is negl ig ibly  smal l  only when the character is t ic  dimension of the crack is smal l  in comparison with the character is -  
t ic  l inear dimension of the solid.  

Following the example  of G. I .  Barenblatt [2], we shall  make the natural  assumption that 

d ~ < z .  (5) 

Hence, formula (4) can be written in the form 

or, keeping in mind that the cohesion coefficient  K is of the order of Gd I / z  and the tensi le  strength of o+ of the order of 
Kl -112 , in the form 

~- / ~+ --~ g ~  (7) 

Obviously, for an idea l ly  br i t t le  solid the intensity of the cohesive forces is of the  order of Young's modulus E and for 
a plastic or near -p las t ic  solid of the order of the yield point. Therefore,  in accordance  with formula (6), the proximity 
of the compressive strength to the modulus of e las t ic i ty  E can serve as a qual i ta t ive  character is t ic  of the proximity of 
the corresponding mate r i a l  to a perfect ly br i t t le  one. Formula (7) can be used to verify the rea l i zab i l i ty  of the smallness 

hypothesis (5) in the case of the  natural  microcracks always present in a real  sol id,  on the basis of macroscopic tests. 

By way of comparison,  we give data for the mechanica l  properties of some quasi-br i t t le  mater ia ls ;  the figures (in 

k g / m m  :2) were taken from handbook [3]: 

s i l ica te  glasses 

cast stone 

acid-res is tant  ceramics 

porcelain 

~+~---3--9, ~ ~---50_200, E = ( 5 - - 8 . 5 ) . 1 0  s ,  

~ + = 2 ,  ~ = 2 0 ,  E = I I . 0 0 0 ,  

~ + = t . t 5 - - i l ,  ~ = 3 5 - - t 6 0 ,  E - = 4 2 - - 7 0 ,  

~ + = 2 . 5 - - 3 . 5 ,  z _ = - 4 5 - - 5 5 ,  E ~ - - - 6 0 - - 8 0 .  

The low compressive strength o for glasses and viscoelast ic  solids, compared with the modulus of e las t ic i ty ,  is 

due to the intense stress re laxat ion  near the ends of the cracks.  
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